3.604 \(\int \frac {(a+b x)^{3/2} \sqrt {c+d x}}{x^4} \, dx\)

Optimal. Leaf size=160 \[ \frac {(b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{8 a^{3/2} c^{5/2}}-\frac {\sqrt {a+b x} (c+d x)^{3/2} (b c-a d)}{4 c^2 x^2}-\frac {\sqrt {a+b x} \sqrt {c+d x} (b c-a d)^2}{8 a c^2 x}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3} \]

[Out]

-1/3*(b*x+a)^(3/2)*(d*x+c)^(3/2)/c/x^3+1/8*(-a*d+b*c)^3*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/a
^(3/2)/c^(5/2)-1/4*(-a*d+b*c)*(d*x+c)^(3/2)*(b*x+a)^(1/2)/c^2/x^2-1/8*(-a*d+b*c)^2*(b*x+a)^(1/2)*(d*x+c)^(1/2)
/a/c^2/x

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {94, 93, 208} \[ \frac {(b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{8 a^{3/2} c^{5/2}}-\frac {\sqrt {a+b x} (c+d x)^{3/2} (b c-a d)}{4 c^2 x^2}-\frac {\sqrt {a+b x} \sqrt {c+d x} (b c-a d)^2}{8 a c^2 x}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^(3/2)*Sqrt[c + d*x])/x^4,x]

[Out]

-((b*c - a*d)^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*a*c^2*x) - ((b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(3/2))/(4*c^2*
x^2) - ((a + b*x)^(3/2)*(c + d*x)^(3/2))/(3*c*x^3) + ((b*c - a*d)^3*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*S
qrt[c + d*x])])/(8*a^(3/2)*c^(5/2))

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{3/2} \sqrt {c+d x}}{x^4} \, dx &=-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3}+\frac {(b c-a d) \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^3} \, dx}{2 c}\\ &=-\frac {(b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{4 c^2 x^2}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3}+\frac {(b c-a d)^2 \int \frac {\sqrt {c+d x}}{x^2 \sqrt {a+b x}} \, dx}{8 c^2}\\ &=-\frac {(b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 a c^2 x}-\frac {(b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{4 c^2 x^2}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3}-\frac {(b c-a d)^3 \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{16 a c^2}\\ &=-\frac {(b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 a c^2 x}-\frac {(b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{4 c^2 x^2}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3}-\frac {(b c-a d)^3 \operatorname {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{8 a c^2}\\ &=-\frac {(b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 a c^2 x}-\frac {(b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{4 c^2 x^2}-\frac {(a+b x)^{3/2} (c+d x)^{3/2}}{3 c x^3}+\frac {(b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{8 a^{3/2} c^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 140, normalized size = 0.88 \[ \frac {\frac {3 x (b c-a d) \left (x^2 (b c-a d)^2 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )-\sqrt {a} \sqrt {c} \sqrt {a+b x} \sqrt {c+d x} (2 a c+a d x+b c x)\right )}{a^{3/2} c^{3/2}}-8 (a+b x)^{3/2} (c+d x)^{3/2}}{24 c x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^(3/2)*Sqrt[c + d*x])/x^4,x]

[Out]

(-8*(a + b*x)^(3/2)*(c + d*x)^(3/2) + (3*(b*c - a*d)*x*(-(Sqrt[a]*Sqrt[c]*Sqrt[a + b*x]*Sqrt[c + d*x]*(2*a*c +
 b*c*x + a*d*x)) + (b*c - a*d)^2*x^2*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])]))/(a^(3/2)*c^(3/
2)))/(24*c*x^3)

________________________________________________________________________________________

fricas [A]  time = 1.43, size = 436, normalized size = 2.72 \[ \left [-\frac {3 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {a c} x^{3} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, {\left (8 \, a^{3} c^{3} + {\left (3 \, a b^{2} c^{3} + 8 \, a^{2} b c^{2} d - 3 \, a^{3} c d^{2}\right )} x^{2} + 2 \, {\left (7 \, a^{2} b c^{3} + a^{3} c^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{96 \, a^{2} c^{3} x^{3}}, -\frac {3 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {-a c} x^{3} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) + 2 \, {\left (8 \, a^{3} c^{3} + {\left (3 \, a b^{2} c^{3} + 8 \, a^{2} b c^{2} d - 3 \, a^{3} c d^{2}\right )} x^{2} + 2 \, {\left (7 \, a^{2} b c^{3} + a^{3} c^{2} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{48 \, a^{2} c^{3} x^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(d*x+c)^(1/2)/x^4,x, algorithm="fricas")

[Out]

[-1/96*(3*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(a*c)*x^3*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*
c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x
)/x^2) + 4*(8*a^3*c^3 + (3*a*b^2*c^3 + 8*a^2*b*c^2*d - 3*a^3*c*d^2)*x^2 + 2*(7*a^2*b*c^3 + a^3*c^2*d)*x)*sqrt(
b*x + a)*sqrt(d*x + c))/(a^2*c^3*x^3), -1/48*(3*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(-a*c)
*x^3*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c
^2 + a^2*c*d)*x)) + 2*(8*a^3*c^3 + (3*a*b^2*c^3 + 8*a^2*b*c^2*d - 3*a^3*c*d^2)*x^2 + 2*(7*a^2*b*c^3 + a^3*c^2*
d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^2*c^3*x^3)]

________________________________________________________________________________________

giac [B]  time = 31.20, size = 2163, normalized size = 13.52 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(d*x+c)^(1/2)/x^4,x, algorithm="giac")

[Out]

1/24*(3*(sqrt(b*d)*b^4*c^3*abs(b) - 3*sqrt(b*d)*a*b^3*c^2*d*abs(b) + 3*sqrt(b*d)*a^2*b^2*c*d^2*abs(b) - sqrt(b
*d)*a^3*b*d^3*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b
*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*a*b*c^2) - 2*(3*sqrt(b*d)*b^14*c^8*abs(b) - 10*sqrt(b*d)*a*b^13*c^
7*d*abs(b) - 6*sqrt(b*d)*a^2*b^12*c^6*d^2*abs(b) + 78*sqrt(b*d)*a^3*b^11*c^5*d^3*abs(b) - 160*sqrt(b*d)*a^4*b^
10*c^4*d^4*abs(b) + 162*sqrt(b*d)*a^5*b^9*c^3*d^5*abs(b) - 90*sqrt(b*d)*a^6*b^8*c^2*d^6*abs(b) + 26*sqrt(b*d)*
a^7*b^7*c*d^7*abs(b) - 3*sqrt(b*d)*a^8*b^6*d^8*abs(b) - 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (
b*x + a)*b*d - a*b*d))^2*b^12*c^7*abs(b) + 33*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d
- a*b*d))^2*a*b^11*c^6*d*abs(b) - 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^
2*a^2*b^10*c^5*d^2*abs(b) - 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*
b^9*c^4*d^3*abs(b) - 93*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^4*b^8*c^
3*d^4*abs(b) + 147*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^5*b^7*c^2*d^5
*abs(b) - 81*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^6*b^6*c*d^6*abs(b)
+ 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^7*b^5*d^7*abs(b) + 30*sqrt(
b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*b^10*c^6*abs(b) + 6*sqrt(b*d)*(sqrt(b*d
)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^2*b^8*c^4*d^2*abs(b) - 96*sqrt(b*d)*(sqrt(b*d)*sqrt
(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^3*b^7*c^3*d^3*abs(b) - 6*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x +
a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^4*b^6*c^2*d^4*abs(b) + 96*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - s
qrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^5*b^5*c*d^5*abs(b) - 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*
c + (b*x + a)*b*d - a*b*d))^4*a^6*b^4*d^6*abs(b) - 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x +
 a)*b*d - a*b*d))^6*b^8*c^5*abs(b) - 98*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*
d))^6*a*b^7*c^4*d*abs(b) - 36*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^2*
b^6*c^3*d^2*abs(b) - 60*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^3*b^5*c^
2*d^3*abs(b) - 62*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^4*b^4*c*d^4*ab
s(b) + 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^5*b^3*d^5*abs(b) + 15*
sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*b^6*c^4*abs(b) + 114*sqrt(b*d)*(sq
rt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a*b^5*c^3*d*abs(b) + 48*sqrt(b*d)*(sqrt(b*d)*sq
rt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^2*b^4*c^2*d^2*abs(b) + 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x
 + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^3*b^3*c*d^3*abs(b) - 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) -
sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^4*b^2*d^4*abs(b) - 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c
+ (b*x + a)*b*d - a*b*d))^10*b^4*c^3*abs(b) - 39*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b
*d - a*b*d))^10*a*b^3*c^2*d*abs(b) - 9*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d
))^10*a^2*b^2*c*d^2*abs(b) + 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^10*a^
3*b*d^3*abs(b))/((b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*
d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*s
qrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4)^3*a*c^2))/b

________________________________________________________________________________________

maple [B]  time = 0.02, size = 485, normalized size = 3.03 \[ -\frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (3 a^{3} d^{3} x^{3} \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}}{x}\right )-9 a^{2} b c \,d^{2} x^{3} \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}}{x}\right )+9 a \,b^{2} c^{2} d \,x^{3} \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}}{x}\right )-3 b^{3} c^{3} x^{3} \ln \left (\frac {a d x +b c x +2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}}{x}\right )-6 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}\, a^{2} d^{2} x^{2}+16 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}\, a b c d \,x^{2}+6 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}\, b^{2} c^{2} x^{2}+4 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}\, a^{2} c d x +28 \sqrt {a c}\, \sqrt {b d \,x^{2}+a d x +b c x +a c}\, a b \,c^{2} x +16 \sqrt {b d \,x^{2}+a d x +b c x +a c}\, \sqrt {a c}\, a^{2} c^{2}\right )}{48 \sqrt {b d \,x^{2}+a d x +b c x +a c}\, \sqrt {a c}\, a \,c^{2} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)*(d*x+c)^(1/2)/x^4,x)

[Out]

-1/48*(b*x+a)^(1/2)*(d*x+c)^(1/2)/a/c^2*(3*a^3*d^3*x^3*ln((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*
x+a*c)^(1/2))/x)-9*a^2*b*c*d^2*x^3*ln((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2))/x)+9*a
*b^2*c^2*d*x^3*ln((a*d*x+b*c*x+2*a*c+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2))/x)-3*b^3*c^3*x^3*ln((a*d*x
+b*c*x+2*a*c+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2))/x)-6*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*a
^2*d^2*x^2+16*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*a*b*c*d*x^2+6*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^
(1/2)*b^2*c^2*x^2+4*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*a^2*c*d*x+28*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+
a*c)^(1/2)*a*b*c^2*x+16*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(a*c)^(1/2)*a^2*c^2)/(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)/x
^3/(a*c)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)*(d*x+c)^(1/2)/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,x\right )}^{3/2}\,\sqrt {c+d\,x}}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x)^(3/2)*(c + d*x)^(1/2))/x^4,x)

[Out]

int(((a + b*x)^(3/2)*(c + d*x)^(1/2))/x^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b x\right )^{\frac {3}{2}} \sqrt {c + d x}}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)*(d*x+c)**(1/2)/x**4,x)

[Out]

Integral((a + b*x)**(3/2)*sqrt(c + d*x)/x**4, x)

________________________________________________________________________________________